Efficacy and durability of a recombinant subunit West Nile virus candidate in protecting hamsters from West Nile encephalitis

Douglas M. Wattsa, Robert B. Tesha, Marina Siirina, Amelia Travassos da Rosaa, Patrick C. Newmana, David E. Clementsb, Steven Ogatab, Beth-Ann Collerb, Carolyn Weeks-Levyb and Michael M. Liebermanb

(a) University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77551, USA
(b) Hawaii Biotech, Inc., 99-193 Aiea Heights Drive, Suite 200, Aiea, HI 96701, USA

Vaccine: Volume 25, Issue 15, 12 April 2007, Pages 2913-2918

Abstract
The efficacy of a new recombinant subunit West Nile virus (WNV) vaccine candidate was determined in a hamster model of meningoencephalitis. Groups of hamsters were immunized subcutaneously with a WNV recombinant envelope protein (80E) with or without WNV non-structural protein 1 (NS1) mixed with adjuvant or adjuvant alone. At 2 weeks, 6 months, and 12 months after two immunizations at 4 week intervals with the respective immunogens, groups of animals were challenged via the intraperitoneal route with a virulent strain of WNV. The two recombinant antigen preparations gave similar results; hamsters in both groups had a strong antibody response following immunization, and none of the animals became ill or developed detectable viremia after challenge with WNV at 2 weeks or 6 months post-booster vaccination. In contrast, mortality among the control animals at 2 weeks post-booster challenge was 73%, and at 6 months post-booster, the mortality was 53% among the control animals. When challenged 12 months after the booster vaccination, a low level viremia was detected in some of the vaccinated hamsters, and one hamster became sick, but recovered. In contrast, all of the control animals that received adjuvant only developed a viremia, and the mortality rate was 77%. These results with the recombinant subunit WNV vaccine are very encouraging and warrant further animal studies to evaluate its potential use to protect humans against WNV disease.