An evaluation of dengue type-2 inactivated, recombinant subunit, and live-attenuated vaccine candidates in the rhesus macaque model

J. Robert Putnaka, Beth-Ann Colerb, Gerald Voss, David W. Vaughna, David Clementsb, Iain Peters, Gary Bignami, Hou-Shu Hounga, Robert C.-M. Chen, David A. Barvir, Jitvimol Seriwatana, Sylvie Cayphas, Nathalie Garçon, Dirk Gheysen, Niranjan Kanesatha, Mike McDonellb, Tom Humphreys, Kenneth H. Eckels, Jean-Paul Prieels and Bruce L. Innisa

(a) Walter Reed Army Institute of Research, Division of Communicable Diseases and Immunology, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
(b) Hawaii Biotech, Inc, 99-193 Aiea Heights Dr., Suite 200 Aiea, HI 96701, USA
(c) GlaxoSmithKline Biologicals, Rue de l’Institut, 89, B-1330 Rixensart, Belgium
(d) GlaxoSmithKline Pharmaceuticals, 1250 S. Collegeville Road, Collegeville, PA 19426, USA


Abstract
The safety, immunogenicity, and protective efficacy of two non-replicating antigen-based vaccines and one live-attenuated virus (LAV) vaccine for dengue type-2 (dengue-2) virus were evaluated in the rhesus macaque model. The non-replicating vaccines consisted of whole, purified inactivated virus (PIV) and a recombinant subunit protein containing the amino-(N)-terminal 80% of envelope protein (r80E), each formulated with one of five different adjuvants. Each formulation was administered to three animals on a 0, 3-month schedule. Following the primary immunizations, 37 of 39 animals demonstrated dengue-2 virus neutralizing antibodies. After the booster immunizations all animals had dengue neutralizing antibodies with peak titers ranging from 1:100 to 1:9700. The highest neutralizing antibody titers were observed in the groups that received r80E antigen formulated with AS04, AS05, or AS08 adjuvant, and PIV formulated with AS05 or AS08 adjuvant. These newer adjuvants are based on alum, fraction QS-21 of saponin, and monophosphoryl lipid A (MPL). Protection was evaluated by dengue-2 virus challenge 2 months after the booster by the measurement of circulating virus (viremia) and post-challenge immune responses. Several groups exhibited nearly complete protection against viremia by bioassay, although there was evidence for challenge virus replication by Taqman™ and immunological assays. None of the vaccines conferred sterile immunity.

The views expressed herein are those of the authors and should not be construed as official or to reflect the views of the Department of Defense or the U.S. Government.